Understanding and modelling kinetic turbulence in magnetized plasmas

Find Similar History 11 Claim Ownership Request Data Change Add Favourite

Title
Understanding and modelling kinetic turbulence in magnetized plasmas

CoPED ID
296d4df1-c8f5-4bf7-824e-fc3f6dd09ebe

Status
Closed


Value
£451,485

Start Date
May 31, 2017

End Date
May 31, 2019

Description

More Like This


Plasma physics is at the core of the UK Magnetic Fusion Research Program, an important pillar of the EPSRC's Energy theme. The generation of electrical power via magnetic confinement fusion represents a promising endeavour: aiming to provide an abundant, inexpensive, clean, safe and reliable source of energy that can support a thriving economy, while at the same time offering a viable alternative to fossil fuels as a way to tackle global environmental challenges. Magnetic confinement fusion makes use of strong magnetic fields to confine the fusion plasma fuel in a series of nested torus shaped magnetic surfaces, in a device known as a tokamak. Turbulence in plasma represents a key impediment to this objective, as turbulent mixing is known to enhance the transport of particles and heat across magnetic surfaces, leading to the eventual loss of plasma confinement that stops the fusion reaction.

Understanding the proper interactions in plasma turbulence, interactions that occur at physical scales captured only by kinetic theories in a six dimensional phase space, allows for correct implementation of turbulence models. These models can be employed for tokamak transport studies, which in turn can determine the most efficient operational regime of current machines and directly impact the design of future tokamak reactors.

As plasma turbulence at kinetic levels is poorly understood to this day, while adequate kinetic turbulence models are yet to be developed, we turn towards space plasma configurations to offer simpler environments for isolating fundamental turbulence dynamics. This project will tackle plasma turbulence from a kinetic perspective, addressing fundamental questions pursued in the solar wind academic community, such as the identification of the dynamical route used for the dissipation of small scale turbulence energy and, at the same time, develop practical solutions in the form of new knowledge-based turbulence modes that will directly aid fusion research (a promising long term industrial goal).

The work will unite collaborators from national (Culham Centre for Fusion Energy) and international (Max-Planck Institute for Plasma Physics, Germany and University of California, Los Angeles, US) institutions, while being led by a researcher based at Coventry University.


More Information

Potential Impact:
The development of fusion energy has a clear economical and social impact in the UK. While the proposed work is part of this overarching effort, the current research proposal has a series of immediate institutional, cross-disciplinary, professional and public beneficiaries.

Institutional beneficiaries: The UK Magnetic Fusion Research Program will be the main beneficiary of this research program, through the CCFE and industrial partners. LES kinetic models coupled to reduced nonlinear simulations offer an efficient way to account for plasma turbulence in fusion devices. As such, more computational resources can be allocated to the description of other complex large-scale geometric effects that impacts fusion development. This is important in minimising the R&D costs of the next generation tokamak machines. The UK National Supercomputing Service ARCHER lists the cost of typical foreseen LES runs at 50 to 80 times less than that of their full nonlinear counterparts, bringing the cost per run down to a few hundred pounds from the tens of thousands. This represents an important cost saving measure, allowing resources to be better allocated elsewhere.

Cross-disciplinary beneficiaries: In the process of building LES models that account for kinetic plasma dynamics, we answer a series of critical questions pursued in the solar wind community. Identifying the correct route for the energy dissipation in the solar wind represents a current endeavour for the astrophysical community. This is the goal for the THOR satellite project (B. Teaca is a member of the science team) a European Space Agency (ESA) M4 mission candidate, with a foreseen cost in excess of 400 million Euros. The investigation of fundamental aspects of plasma turbulence proposed here and the possibility to employ LES models in the solar wind to identify different turbulent transport regimes has a direct bearing on the mission policy making of ESA and impacts directly the mission selection process.

Professional and public beneficiaries: Towards the end of the program we aim to organise a one-day workshop on LES methods in plasmas. The workshop will be opened to scientific partners, guests from industry and will feature a general introductory session to fusion in magnetised plasma. This session will be open to the general public, free of charge, and feature a Q&A portion. This will permit to present current scientific advances to the generic public and help popularise natural science from the perspective of real life applications.

Bogdan Teaca PI_PER

Subjects by relevance
  1. Plasma physics
  2. Nuclear fusion
  3. Fusion energy
  4. Nuclear reactions
  5. Solar wind
  6. Turbulence

Extracted key phrases
  1. Adequate kinetic turbulence model
  2. LES kinetic model
  3. Plasma turbulence
  4. Small scale turbulence energy
  5. Kinetic plasma dynamic
  6. Fusion plasma fuel
  7. Fundamental turbulence dynamic
  8. Magnetic confinement fusion
  9. UK Magnetic Fusion Research Program
  10. LES model
  11. Plasma confinement
  12. Fusion energy
  13. Space plasma configuration
  14. Kinetic level
  15. Kinetic perspective

Related Pages

UKRI project entry

UK Project Locations