Nov. 27, 2023, 2:14 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 20, 2023, 2:04 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 13, 2023, 1:34 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 6, 2023, 1:32 p.m. |
Added
35
|
{"external_links": []}
|
|
Aug. 14, 2023, 1:31 p.m. |
Added
35
|
{"external_links": []}
|
|
Aug. 7, 2023, 1:32 p.m. |
Added
35
|
{"external_links": []}
|
|
July 31, 2023, 1:35 p.m. |
Added
35
|
{"external_links": []}
|
|
July 24, 2023, 1:36 p.m. |
Added
35
|
{"external_links": []}
|
|
July 17, 2023, 1:35 p.m. |
Added
35
|
{"external_links": []}
|
|
July 10, 2023, 1:26 p.m. |
Added
35
|
{"external_links": []}
|
|
July 3, 2023, 1:27 p.m. |
Added
35
|
{"external_links": []}
|
|
June 26, 2023, 1:26 p.m. |
Added
35
|
{"external_links": []}
|
|
June 19, 2023, 1:28 p.m. |
Added
35
|
{"external_links": []}
|
|
June 12, 2023, 1:30 p.m. |
Added
35
|
{"external_links": []}
|
|
June 5, 2023, 1:34 p.m. |
Added
35
|
{"external_links": []}
|
|
May 29, 2023, 1:28 p.m. |
Added
35
|
{"external_links": []}
|
|
May 22, 2023, 1:30 p.m. |
Added
35
|
{"external_links": []}
|
|
May 15, 2023, 1:32 p.m. |
Added
35
|
{"external_links": []}
|
|
May 8, 2023, 1:38 p.m. |
Added
35
|
{"external_links": []}
|
|
May 1, 2023, 1:28 p.m. |
Added
35
|
{"external_links": []}
|
|
April 24, 2023, 1:35 p.m. |
Added
35
|
{"external_links": []}
|
|
April 17, 2023, 1:29 p.m. |
Added
35
|
{"external_links": []}
|
|
April 10, 2023, 1:25 p.m. |
Added
35
|
{"external_links": []}
|
|
April 3, 2023, 1:27 p.m. |
Added
35
|
{"external_links": []}
|
|
Jan. 28, 2023, 11:09 a.m. |
Created
43
|
[{"model": "core.projectfund", "pk": 31827, "fields": {"project": 9053, "organisation": 2, "amount": 0, "start_date": "2022-10-02", "end_date": "2026-09-29", "raw_data": 48035}}]
|
|
Jan. 28, 2023, 11:09 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 90543, "fields": {"project": 9053, "organisation": 171, "role": "LEAD_ORG"}}]
|
|
Jan. 28, 2023, 11:09 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 56852, "fields": {"project": 9053, "person": 12941, "role": "STUDENT_PER"}}]
|
|
Jan. 28, 2023, 11:09 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 56851, "fields": {"project": 9053, "person": 12942, "role": "SUPER_PER"}}]
|
|
Jan. 28, 2023, 10:52 a.m. |
Updated
35
|
{"title": ["", "Hopping through the interfaces: a multiscale chemo-mechanic model for energy materials"], "description": ["", "\nMechanical damage arising from electrochemical processes in energy materials can alter significantly their mass transport capability, and overall performance of energy storage systems. The damage is frequently initiated at material's internal interfaces, subsequently disrupting ionic and electronic conductivity paths. The coupling between interfacial damage and ionic transport is not yet fully understood, and requires description of its origins at the nanoscale. This project will provide enhanced understanding of the damage-transport coupling for various interfaces in energy materials across the length scales by developing a novel data-driven multiscale methodology based on the Bayesian inference, linking first-principles calculations with the continuum modelling framework, and subject to physical constraints.\nMechanical damage arising from electrochemical processes in energy materials can alter significantly their mass (e.g. Li-ion) transport capability, and overall performance of energy storage systems. The damage is frequently initiated at material's internal interfaces at the microscale, subsequently disrupting ionic and electronic conductivity paths, and thus reducing electrochemical performance of energy materials. The coupling between interfacial damage and ionic transport is not yet fully understood, and requires detailed description of its origins at the nanoscale.\n\nThis project will provide enhanced understanding of the damage-transport coupling for various interfaces in energy materials across the length scales by developing a novel data-driven multiscale methodology linking first-principles calculations with the continuum modelling framework. That will simultaneously enable to identify relevant model parameters, account for their variability, and quantify their uncertainty. The ultimate interface model will be implemented within a finite-element approach, and applied to two case studies at the microscale: (a) intergranular damage within active electrode particles, and (b) interface damage between active particles and surrounding material (e.g. solid electrolyte), both subject to electrochemical cycling.\n\nThe project will also be linked to nanoscale experimental investigations carried out by the experimental partner (Prof Piper, EIC/WMG) to match modelling efforts with experiments.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Active"]}
|
|
Jan. 28, 2023, 10:52 a.m. |
Added
35
|
{"external_links": [36862]}
|
|
Jan. 28, 2023, 10:52 a.m. |
Created
35
|
[{"model": "core.project", "pk": 9053, "fields": {"owner": null, "is_locked": false, "coped_id": "d5730442-1d22-4be1-8789-a91aaa087848", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 48033, "created": "2023-01-28T10:51:27.388Z", "modified": "2023-01-28T10:51:27.388Z", "external_links": []}}]
|
|