History of changes to: Safety strategies and engineering solutions for hydrogen heavy-duty vehicles
Date Action Change(s) User
Nov. 27, 2023, 2:14 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:04 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:34 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:32 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:32 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:36 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:26 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:30 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:34 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:29 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:32 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:38 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:35 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:29 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:09 a.m. Created 43 [{"model": "core.projectfund", "pk": 31263, "fields": {"project": 8489, "organisation": 2, "amount": 0, "start_date": "2022-09-19", "end_date": "2026-09-18", "raw_data": 40562}}]
Jan. 28, 2023, 11:09 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 88896, "fields": {"project": 8489, "organisation": 150, "role": "LEAD_ORG"}}]
Jan. 28, 2023, 11:09 a.m. Created 40 [{"model": "core.projectperson", "pk": 55673, "fields": {"project": 8489, "person": 11941, "role": "STUDENT_PER"}}]
Jan. 28, 2023, 11:09 a.m. Created 40 [{"model": "core.projectperson", "pk": 55672, "fields": {"project": 8489, "person": 11942, "role": "SUPER_PER"}}]
Jan. 28, 2023, 10:52 a.m. Updated 35 {"title": ["", "Safety strategies and engineering solutions for hydrogen heavy-duty vehicles"], "description": ["", "\nStrategic political developments towards a low carbon economy enable practical implementation of zero-emission applications including hydrogen-fuelled heavy-duty vehicles (HDV) such as buses and trucks. The use of hydrogen in public transport implies stringent requirements of bus design. Not all knowledge gaps are closed to manufacture inherently safer HDV transport, including double-deck buses. Industry and regulators have particular concerns about two aspects of HDV design that are considered critical for their successful roll-out: - development of refuelling protocol for heavy-duty vehicles capable to provide refuelling time comparable with modern fossil-fuel vehicles and yet not jeopardising the safety of onboard compressed hydrogen storage system (CHSS), and - fire-resistance rating of current CHSS, which may lead to their rupture in a fire with catastrophic consequences, i.e. blast wave, fireball and projectiles. The project will critically review "old" and new hazards of HDV of different designs and sectors, i.e. buses and trucks. Existing prevention and mitigation safety strategies and engineering solutions, knowledge gaps and technological bottlenecks in the provision of safety of HDV will be identified and analysed. The expected research outcomes may be in the form of: - recommendations for the inherently safer design of HDV, - fuelling protocol for different CHSS; - optimised safety design of CHSS using TPRD; - safety design of CHSS based on self-venting TPRD-less containers. It is envisaged that the research will rely on the use of Computational Fluid Dynamics (CFD) to study and optimise the heat and mass transfer during refuelling, the performance of CHSS in realistic fires of different intensity, including smouldering and impinging jet fires. The successful candidate is expected to have a strong background in one of the following disciplines: mathematics, physics, chemistry, fluid dynamics, heat and mass transfer, combustion. Any previous experience of theoretical analysis and/or numerical studies is welcome. The research will be conducted at the HySAFER Centre. The candidate will focus on CFD modelling and numerical simulations, use relevant software (ANSYS Fluent, FieldView, etc.) and the state-of-the-art computational resources - multi-processor workstations available at HySAFER Centre and HPC facility available within EPSRC KELVIN-2 project. This research will be aligned to HySAFER's externally funded projects and reported at international conferences. Publication of results in peer-reviewed journals is expected.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Active"]}
Jan. 28, 2023, 10:52 a.m. Added 35 {"external_links": [34664]}
Jan. 28, 2023, 10:52 a.m. Created 35 [{"model": "core.project", "pk": 8489, "fields": {"owner": null, "is_locked": false, "coped_id": "995d0b75-38e1-4e4e-ba44-3fb02f4528f3", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 40548, "created": "2023-01-28T10:49:07.094Z", "modified": "2023-01-28T10:49:07.094Z", "external_links": []}}]