History of changes to: The Integrated Hydrogen Fuel Cell – Lithium-ion Battery Module (Hydrium)
Date Action Change(s) User
Nov. 27, 2023, 2:13 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:04 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:34 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:32 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:36 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:26 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:30 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:34 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:29 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:32 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:38 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:35 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:09 a.m. Created 43 [{"model": "core.projectfund", "pk": 30579, "fields": {"project": 7803, "organisation": 4, "amount": 314941, "start_date": "2020-09-30", "end_date": "2021-03-30", "raw_data": 48751}}]
Jan. 28, 2023, 10:52 a.m. Added 35 {"external_links": []}
April 11, 2022, 3:48 a.m. Created 43 [{"model": "core.projectfund", "pk": 22718, "fields": {"project": 7803, "organisation": 4, "amount": 314941, "start_date": "2020-09-30", "end_date": "2021-03-30", "raw_data": 35963}}]
April 11, 2022, 3:48 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 86068, "fields": {"project": 7803, "organisation": 4333, "role": "PARTICIPANT_ORG"}}]
April 11, 2022, 3:48 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 86067, "fields": {"project": 7803, "organisation": 4333, "role": "LEAD_ORG"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53339, "fields": {"project": 7803, "person": 10764, "role": "PM_PER"}}]
April 11, 2022, 1:48 a.m. Updated 35 {"title": ["", "The Integrated Hydrogen Fuel Cell \u2013 Lithium-ion Battery Module (Hydrium)"], "description": ["", "\nWe are currently entering the 'age of electrochemical power', displacing fossil fuels and the internal combustion engine. The critical need to decarbonise the transport sector has led to major improvements in battery technology and the rapidly growing uptake of electric vehicles. Li-ion battery technology has led the way and resulted in massively improved performance and reduced cost. However, the weight/size, recharging time and cost of batteries are a challenge for medium- and heavy-duty commercial vehicles. Hybridising fuel cells with batteries deliveries a 'best of both worlds' scenario that can deliver the needs of this sector.\n\nFuel cells are an electrochemical energy technology that has the highest know efficiency for conversion of chemical fuel into electricity. They work by electrochemically splitting fuel molecules (e.g. hydrogen), with the consequent passage of electrical current. There is no combustion or moving parts involved, and the polymer electrolyte fuel cell (PEFC), which operates on hydrogen fuel at a temperature of 50-80C, is considered to be the most promising fuel cell type for automotive applications.\n\nWhile the PEFC shows great promise and delivers in terms of performance (efficiency, power density, etc.) it still requires cost reduction, a means of large-scale manufacture and improvements to longevity. Bramble Energy's technology uses printed circuit board (PCB) materials and manufacturing techniques to realise a low-cost, light-weight, rugged system with fundamental advantages that make it highly design flexible and durable. The Bramble Energy approach thinks about the structure of a fuel cell in a different way. A traditional fuel cell needs capital intensive, bespoke manufacturing techniques tailored specifically to each application. A Bramble Energy fuel cell uses only standard PCB materials and manufacturing techniques such that its production can be done, in principle, at any PCB production plant worldwide.\n\nThe global commercial road vehicle market was valued at USD 1.32 trillion in 2017 and is a major source of CO2 emissions. Hydrogen fuel cells offer the opportunity to decarbonise this sector, which, due to weight and range requirements, is exceedingly difficult to electrify using lithium-ion batteries alone. This project will demonstrate how fuel cells can be incorporated within conventional lithium-ion battery modules such that the fuel cell effectively becomes part of the battery pack space within a vehicle. This will significantly improve the ability of fuel cells to be integrated within electric vehicles, improve manufacturability, system weight/volume performance and cost.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Closed"]}
April 11, 2022, 1:48 a.m. Added 35 {"external_links": [28166]}
April 11, 2022, 1:48 a.m. Created 35 [{"model": "core.project", "pk": 7803, "fields": {"owner": null, "is_locked": false, "coped_id": "bda607a4-d81b-48c1-8663-79736b0b3627", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 35948, "created": "2022-04-11T01:46:29.833Z", "modified": "2022-04-11T01:46:29.833Z", "external_links": []}}]