History of changes to: Coarse-grained modelling of membranes for fuel cell applications
Date Action Change(s) User
Nov. 27, 2023, 2:13 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:04 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:34 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:32 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:36 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:26 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:30 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:34 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:29 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:32 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:38 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:35 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:09 a.m. Created 43 [{"model": "core.projectfund", "pk": 30568, "fields": {"project": 7792, "organisation": 2, "amount": 0, "start_date": "2021-09-30", "end_date": "2025-09-29", "raw_data": 48742}}]
Jan. 28, 2023, 10:52 a.m. Added 35 {"external_links": []}
April 11, 2022, 3:48 a.m. Created 43 [{"model": "core.projectfund", "pk": 22707, "fields": {"project": 7792, "organisation": 2, "amount": 0, "start_date": "2021-09-30", "end_date": "2025-09-29", "raw_data": 35911}}]
April 11, 2022, 3:48 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 86033, "fields": {"project": 7792, "organisation": 330, "role": "STUDENT_PP_ORG"}}]
April 11, 2022, 3:48 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 86032, "fields": {"project": 7792, "organisation": 1377, "role": "LEAD_ORG"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53335, "fields": {"project": 7792, "person": 10751, "role": "STUDENT_PER"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53334, "fields": {"project": 7792, "person": 10752, "role": "SUPER_PER"}}]
April 11, 2022, 1:48 a.m. Updated 35 {"title": ["", "Coarse-grained modelling of membranes for fuel cell applications"], "description": ["", "\nJacob is supported by an Industrial CASE studentship and this category is being used for his JeS records, so that the voucher number and his funding are linked to his records throughout the four years of his postgraduate studies. He is also an IDS student with a fee waiver from the School of the Physical Sciences. Jacob will first take a taught MPhil in Physics under the auspices of the CDT in Computational Methods for Materials Science and on completion of this degree transfer to the Department of Materials Science under the supervision of Professor James Elliott to follow the PhD described below.\n\nThe project will predict and verify structure-property relationships in thin proton-conducting fluorocarbon ionomer films by a combined modelling and measurement approach, building on an initial many-body dissipative particle dynamics (MDPD) model to refine interpretation of neutron reflectivity (NR) and grazing-incident small-angle X-ray scattering (GI-SAXS) measurements of ionomer thin films on a range of substrates. The MDPD model predicts significant structural changes within the ionomer thin film as a function of thickness in the 3-10 nm range and, using NR data acquired by Johnson Matthey, model-independent methods have been developed for extracting density profiles from neutron scattering data to compare with models, which are based on previous work inverting SAXS. The next steps for this project will be to verify the refined model predictions with experimental data, understand and rectify the discrepancies and then introduce property prediction as a function of film thickness, ionomer type, solvent type, carbon surface functionality, Pt loading and drying temperature.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Active"]}
April 11, 2022, 1:48 a.m. Added 35 {"external_links": [28130]}
April 11, 2022, 1:48 a.m. Created 35 [{"model": "core.project", "pk": 7792, "fields": {"owner": null, "is_locked": false, "coped_id": "60d1cbc3-0532-442b-9d81-2158effb69ef", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 35894, "created": "2022-04-11T01:46:28.143Z", "modified": "2022-04-11T01:46:28.143Z", "external_links": []}}]