Enabling breakthrough energy materials with advanced microscopy and modelling
Find Similar History 38 Claim Ownership Request Data Change Add FavouriteTitle
CoPED ID
Status
Value
Start Date
End Date
Description
The aim of this research is to enable future energy materials by improving their performance. This will be done by establishing a novel methodology combining advanced microscopy and modelling to understand how the atomistic behaviour controls their macroscopic properties.
The properties and behaviour of materials are controlled by what is happening at the atomic scale. Understanding this relationship can lead to the optimisation of existing materials and the design of new ones. However, it can be hard to know enough about the structure and bonding at the atomistic level (i.e. the local chemistry) to accurately predict the properties of a material. Recent advances in electron microscopy combined with theoretical developments carried out as part of this research mean that we can now take a step forward in this field and start solving problems involving important functional materials.
Knowing how the local chemistry is related to the macroscopic properties is a crucial part of designing and optimising materials for energy applications. This research focuses on three energy materials systems which have the potential to make an enormous impact on the economy and environment. The first of these involves development of a new transparent conducing oxide (TCO). TCOs are used in flat panel displays, such as smart phones and televisions, and solar cells. The most commonly used TCO contains indium, which has a high supply risk, and the manufacturing process to make it is very energy intensive. Development of a TCO which does not contain indium and is produced by low energy methods is crucial to the sustainability of a variety of technological applications. This work aims to improve the performance of a new TCO material by relating the electrical and optical properties to the local chemistry.
The second material being investigated in this research is catalyst particles for use in fuel cells. Fuel cells are a viable way of making road vehicles which emit fewer greenhouse gases. A reduction in the greenhouse gas emissions (GGEs) from transport is an important part of the UK's plan to reduce GGEs by 2050. The catalyst studied here forms part of the fuel cell which needs optimising before fuel cells can become a mainstream energy technology.
The last material system that this work will investigate is metals containing hydrogen. Metal and metal alloy components used in many engineering applications suffer from devastating failure as a result of hydrogen embrittlement. These include materials used in oil pipelines, nuclear reactors and the components that would be used to make hydrogen fuel a reality. Exactly how this happens is not known but being able to understand where the hydrogen is in the material is a crucial step towards not only understanding the mechanism but guarding against it.
More Information
Potential Impact:
The outputs of this research will impact more widely than the more obvious academic research implications described in the Academic Beneficiaries section. This wider impact will result via both direct and indirect routes. The direct pathways to impacts are those which have an immediate potential benefit whilst the indirect pathways to impact are those where the link occurs by supporting other areas of science or other activities.
One of the most direct impacts of this research is on myself. It will allow me to develop and take the next step towards an academic career. It will enable me to build my own collaborations, establish a group, gain further experience in guiding and supervising D.Phil. students and expand my outreach skills. The research will also have a direct impact on the DTA student associated with the project. It will allow them to gain a variety of scientific skills including technical skills, such as software development, and more general skills, such as how to give a presentation and critical thinking.
The proposed work will have an impact on the environment, economy and manufacturing.
1. Environmental impact
The UK is committed to reducing greenhouse gas emissions by 2050. Pathways to achieving this target have been identified by the government and include low carbon transport and electricity. They have also pinpointed industry as a sector which will need to reduce emissions. Work on materials system 2 has potential impact on fuel cells which are a viable low carbon transport solution. Work on materials system 3 supports the development of materials for use in clean energy technologies such as nuclear and hydrogen. In addition to this, work on a competitive transparent conducting oxide (TCO) (materials system 1) produced by a low-energy manufacturing route would go towards reducing the environmental impact of that particular industry.
2. Economic and manufacturing impact
Commercialisation of the software developed in this work will have a direct economic impact. Accelrys (www.accelrys.com) already licences CASTEP via European Academic licences and as part of its Materials Studio package. There is excellent potential for licensing the developments of CASTEP proposed in this project, and a statement of support from Accelrys is attached.
The development and improvement of energy materials has an impact on manufacturing and the economy. Via direct (materials system 2) and indirect (materials systems 1 and 3) links to industry, this research is aimed at answering questions of immediate and practical importance. The development of new energy technologies will also diversify and strengthen the UK's energy portfolio. I will also transfer experimental skills in advanced electron microscopy and modelling to researchers in Johnson Matthey in work strand 2.
There will also be an impact on education through outreach and training a new generation of scientists.
1. Outreach
The Department of Materials - Oxford University engages significantly in outreach activities. These activities increase awareness of science and encourage school children to consider scientific careers. In support of this I regularly give talks to secondary school children as part of the departments outreach program and I plan to strengthen my participation in outreach activities, as detailed in the Pathways to Impact document.
2. Training a new generation of scientists
I will take part in teaching undergraduate and training graduate students, which will impact on the individuals directly and have an indirect benefit to the economy by contributing to a scientifically literate workforce. More details of my teaching activities are given in the Pathways to Impact document.
University of Oxford | LEAD_ORG |
Engineering and Physical Sciences Research Council (EPSRC) | COLLAB_ORG |
University of Oxford | FELLOW_ORG |
STFC - Laboratories | PP_ORG |
Accelrys Limited | PP_ORG |
Johnson Matthey Plc | PP_ORG |
Rebecca Nicholls | PI_PER |
Rebecca Nicholls | FELLOW_PER |
Subjects by relevance
- Emissions
- Environmental effects
- Greenhouse gases
- Fuels
- Decrease (active)
- Hydrogen
- Fuel cells
- Materials (matter)
- Sustainable development
- Traffic
- Materials research
Extracted key phrases
- Breakthrough energy material
- Energy material system
- Future energy material
- New tco material
- Important functional material
- New energy technology
- Second material
- Energy manufacturing route
- Low energy method
- Mainstream energy technology
- Clean energy technology
- Energy application
- Advanced electron microscopy
- Energy intensive
- Energy portfolio