History of changes to: Artificial Photosynthesis: Solar Fuels
Date Action Change(s) User
Nov. 27, 2023, 2:13 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:03 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:34 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:32 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:36 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:26 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:30 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:34 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:29 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:32 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:38 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:35 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:28 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:27 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:09 a.m. Created 43 [{"model": "core.projectfund", "pk": 30412, "fields": {"project": 7636, "organisation": 2, "amount": 1559914, "start_date": "2009-01-12", "end_date": "2013-04-10", "raw_data": 48094}}]
Jan. 28, 2023, 10:52 a.m. Added 35 {"external_links": []}
April 11, 2022, 3:48 a.m. Created 43 [{"model": "core.projectfund", "pk": 22551, "fields": {"project": 7636, "organisation": 2, "amount": 1559914, "start_date": "2009-01-12", "end_date": "2013-04-10", "raw_data": 35304}}]
April 11, 2022, 3:48 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 85530, "fields": {"project": 7636, "organisation": 7, "role": "COFUND_ORG"}}]
April 11, 2022, 3:48 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 85529, "fields": {"project": 7636, "organisation": 245, "role": "LEAD_ORG"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53070, "fields": {"project": 7636, "person": 1790, "role": "COI_PER"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53069, "fields": {"project": 7636, "person": 4893, "role": "COI_PER"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53068, "fields": {"project": 7636, "person": 5797, "role": "COI_PER"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53067, "fields": {"project": 7636, "person": 10616, "role": "COI_PER"}}]
April 11, 2022, 3:48 a.m. Created 40 [{"model": "core.projectperson", "pk": 53066, "fields": {"project": 7636, "person": 10617, "role": "PI_PER"}}]
April 11, 2022, 1:48 a.m. Updated 35 {"title": ["", "Artificial Photosynthesis: Solar Fuels"], "description": ["", "\nAims and Grand Challenges: The development of scaleable, efficient, and low intensity-tolerant solar energy harvesting systems represents one of the greatest scientific challenges today. In this research proposal we propose to explore a bold and innovative approach that uses solar energy to both generate energy and fix carbon dioxide in one step, to produce a type of solar fuel cell which would yield methanol or similar feedstock (this is the long term ~10 year aim). This is an extremely challenging problem and in this study we will bring to together researchers in Chemistry and Electrical Engineering in Glasgow, with those in existing Bio-energy research (Bacterial Photosynthesis, Plant Molecular Biology) along with the key international groups in this area from the USA, Japan, and Germany, to explore the idea of transferring concepts from natural photosynthesis to solid state devices. In this research we will learn from Photosynthesis how to arrange light harvesting/reaction centre units on a surface in an immobilised environment to assemble highly efficient and broad spectrum light harvesting devices using inorganic/organic chemistry approaches. Therefore by combining research from Chemistry (Model systems, supramolecular chemistry, and photoactive units and metalloenzyme models) with Electrical Engineering (Surface patterning, lithography, and surface structure manipulation) and Molecular Biology (Structural biology, biological electron transfer, and membrane bound proteins) we will develop a major and long term interdisciplinary research program with this grand aim. Ultimately, success in this research could allow the development of a sustainable carbon neutral economy arresting the increasing CO2 levels in the atmosphere from fossil fuel burning. This will have a major impact limiting global warming whilst securing our energy needs - a major issue identified by the DTI CAT and Stern Review reports.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Closed"]}
April 11, 2022, 1:48 a.m. Added 35 {"external_links": [27705]}
April 11, 2022, 1:48 a.m. Created 35 [{"model": "core.project", "pk": 7636, "fields": {"owner": null, "is_locked": false, "coped_id": "f02c5fa7-f2b5-40f9-88dc-29ca24e60e4f", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 35289, "created": "2022-04-11T01:46:07.310Z", "modified": "2022-04-11T01:46:07.310Z", "external_links": []}}]