Nov. 27, 2023, 2:13 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 20, 2023, 2:03 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 13, 2023, 1:34 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 6, 2023, 1:31 p.m. |
Added
35
|
{"external_links": []}
|
|
Aug. 14, 2023, 1:31 p.m. |
Added
35
|
{"external_links": []}
|
|
Aug. 7, 2023, 1:32 p.m. |
Added
35
|
{"external_links": []}
|
|
July 31, 2023, 1:34 p.m. |
Added
35
|
{"external_links": []}
|
|
July 24, 2023, 1:36 p.m. |
Added
35
|
{"external_links": []}
|
|
July 17, 2023, 1:35 p.m. |
Added
35
|
{"external_links": []}
|
|
July 10, 2023, 1:26 p.m. |
Added
35
|
{"external_links": []}
|
|
July 3, 2023, 1:27 p.m. |
Added
35
|
{"external_links": []}
|
|
June 26, 2023, 1:26 p.m. |
Added
35
|
{"external_links": []}
|
|
June 19, 2023, 1:27 p.m. |
Added
35
|
{"external_links": []}
|
|
June 12, 2023, 1:29 p.m. |
Added
35
|
{"external_links": []}
|
|
June 5, 2023, 1:34 p.m. |
Added
35
|
{"external_links": []}
|
|
May 29, 2023, 1:28 p.m. |
Added
35
|
{"external_links": []}
|
|
May 22, 2023, 1:29 p.m. |
Added
35
|
{"external_links": []}
|
|
May 15, 2023, 1:32 p.m. |
Added
35
|
{"external_links": []}
|
|
May 8, 2023, 1:37 p.m. |
Added
35
|
{"external_links": []}
|
|
May 1, 2023, 1:28 p.m. |
Added
35
|
{"external_links": []}
|
|
April 24, 2023, 1:35 p.m. |
Added
35
|
{"external_links": []}
|
|
April 17, 2023, 1:28 p.m. |
Added
35
|
{"external_links": []}
|
|
April 10, 2023, 1:25 p.m. |
Added
35
|
{"external_links": []}
|
|
April 3, 2023, 1:26 p.m. |
Added
35
|
{"external_links": []}
|
|
Jan. 28, 2023, 11:09 a.m. |
Created
43
|
[{"model": "core.projectfund", "pk": 29984, "fields": {"project": 7204, "organisation": 2, "amount": 923976, "start_date": "2017-09-30", "end_date": "2021-03-30", "raw_data": 49611}}]
|
|
Jan. 28, 2023, 10:52 a.m. |
Added
35
|
{"external_links": []}
|
|
April 11, 2022, 3:48 a.m. |
Created
43
|
[{"model": "core.projectfund", "pk": 22119, "fields": {"project": 7204, "organisation": 2, "amount": 923976, "start_date": "2017-09-30", "end_date": "2021-03-30", "raw_data": 33200}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83457, "fields": {"project": 7204, "organisation": 4423, "role": "PP_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83456, "fields": {"project": 7204, "organisation": 8868, "role": "PP_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83455, "fields": {"project": 7204, "organisation": 330, "role": "PP_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83454, "fields": {"project": 7204, "organisation": 676, "role": "PP_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83453, "fields": {"project": 7204, "organisation": 330, "role": "COLLAB_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83452, "fields": {"project": 7204, "organisation": 4425, "role": "COLLAB_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83451, "fields": {"project": 7204, "organisation": 545, "role": "COLLAB_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 83450, "fields": {"project": 7204, "organisation": 2207, "role": "LEAD_ORG"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 51678, "fields": {"project": 7204, "person": 4519, "role": "COI_PER"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 51677, "fields": {"project": 7204, "person": 4899, "role": "COI_PER"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 51676, "fields": {"project": 7204, "person": 3941, "role": "COI_PER"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 51675, "fields": {"project": 7204, "person": 3067, "role": "COI_PER"}}]
|
|
April 11, 2022, 3:48 a.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 51674, "fields": {"project": 7204, "person": 4231, "role": "PI_PER"}}]
|
|
April 11, 2022, 1:48 a.m. |
Updated
35
|
{"title": ["", "ISCF Wave 1: 3D electrodes from 2D materials"], "description": ["", "\nThis project focuses on delivering one of the key Industrial Challenge Fund Areas, which is 'the design, development and manufacture of batteries for the electrification of vehicles'. The improved materials, electrodes and devices will be designed, manufactured and validated in two key centres in the UK, which are (1) National Graphene Centre at Manchester and (2) the UK's first full battery prototyping lines in a non-commercial environment at the WMG Energy Innovation Centre. \nDevelopments in electrochemical energy storage have transformed our use of personal devices (mobile phones, laptops)\nand are now poised to bring about a similar transformation in vehicular transport. Electrochemical energy storage (batteries\nfor storage of energy, supercapacitors where delivery of power is critical) is also making in-roads to other fields of transport,\nsuch as aircraft, and is increasingly a focus for storage of electricity on the "grid" scale. Improvements in energy storage\ndepend on a chain of technological developments, but the initial one is the development of new electrochemistry/electrode\nmaterials, which allows more energy to be stored and/or higher power extraction.\nThe advent of 2D materials, sparked by the isolation of graphene (2-dimensional carbon) and understanding of its\nexceptional physical properties, has ignited enormous interest in the application of this family of materials as electrodes,\nwith the express goals of improving existing storage approaches, and of developing new electrochemical storage methods.\nAlthough initial results with graphene, in both the battery and supercapacitor contexts, have been promising subsequent\nwork has shown that the strong thermodynamic tendency of graphene sheets to re-aggregate (to graphite) means that\ninitial improvements in performance are generally not retained over repeated cycles. \nThe approach that we concentrate on in this work is to use so-called heterostructures, solution phase mixtures\nof more than one 2D material, as our composite electrode material.\nA second point is that 2D materials are often only available on a very small scale, thus testing of their\nperformance in electrochemical storage technologies is frequently performed on scales that are too small to be\nrepresentative of realistic devices, particularly with regard to transport applications. Again, we will address this challenge by\nexploiting our own (patented) method to "exfoliate" 2D materials, which is scaleable, and by building in porosity to the\nelectrode design when scaling the electrode preparations up. Finally, we will test the assembled large scale\ndevices under realistic operational conditions and use the results of that testing to inform further optimisation of the\nmaterial preparation and the electrode formulation.\n The proposal aligns strongly with the Industrial Strategy Challenge Fund objectives in that it:\n 1: has strong support from a range of UK businesses (right across the value chain from small materials processing firms to end users such as JLR) and thereby increases UK businesses' investment in R&D and improved R&D capability and capacity; \n 2: the work is a collaboration between a Chemist (Manchester), Chemical Engineer (WMG) and Electrical Engineers (Manchester), and thus provides multi- and interdisciplinary research around the challenge areas of the ISCF; \n 3: the project will increase business-academic links in areas relating to the challenge areas, specifically as development of new electrode materials, novel methods to study degradation and to model cell performance are important components of this work \n 4: the project will increase collaboration between younger, smaller companies (eg Archipelago) and larger, more established companies up the value chain (eg Johnson Matthey, JLR);\n 5: Successful prosecution of the project will increase overseas investment in R&D in the UK, given the direct links to overseas-owned industries in the project.\n\n"], "extra_text": ["", "\n\nPotential Impact:\nSocietal\nThe growth of the UK renewable energy sector, in particular its expansion into the low-carbon mobility and low-carbon grid\nwill stimulate the demand for highly skilled UK materials, engineering and manufacturing jobs. UK society will therefore\nbenefit through more energy efficient transport and cleaner energy from the grid, with the resulting lower CO2 emission,\ncost reductions and air quality improvements - all with consequent improvements in public health. Our project expects to\ndrive the translation of new materials and electrodes from UK labs into the real-world, and therefore establish a key\nmilestone for the UK industry to exploit the manufacture of game-changing energy storage devices via innovation in the\nunderpinning science and high value added manufacturing technologies.\nEconomic\nEnergy storage is a driver of economic growth, with the global market for electrochemical capacitors reported to worth over\n$6 billion by 2024 and lithium batteries predicted to be worth over £60 billion within the next 20 years, and in particular the\nfailure to deploy grid-scale energy storage could lead to high system costs from 2030. This project will therefore enable\nthese economic opportunities, working directly with high value added companies which will be immediate beneficiaries from\nour project. This will enable the UK to increase (and continues to remain) its global competitiveness. We provide\nstatements of support detailing the involvement of companies representing the major stakeholders across the full supply\nchain: from materials and electrodes manufacture to automotive manufacture. These include major exploiters and\nemployers in the UK (Johnson Matthey, Technical Fibre, Archipelago and Jaguar Land Rover).\nPeople\nThe project team will benefit from working on an exciting and leading project with a broad range of opportunities - this will\naid their personal and career development. They will all benefit through enhanced research profile, but crucially from the\nshared learning from working together and information flow between Manchester and Warwick, plus the training created by\nthe project members and opportunities from the industrial contribution. The research outputs will enable both universities to\nexpand their individual research portfolios that underpin commitment to teaching STEM subjects at undergraduate and postgraduate\nlevels. This will cover taught materials and projects, at all levels from basic skills to doctoral level: students will benefit from\nthe incorporation of new collaborative R&D knowledge and the feedback of 'industrial relevance' from organisations\nexploiting the knowledge. This will therefore nurture future generations of engineers and scientists, in particular equipping\nthem with the new skills necessary for advanced materials, engineering and manufacturing sectors. Other research\ninstitutions, nationally and internationally will benefit from the learning and also the shared knowledge, methodologies and\ndata that will be made available from the project. In particular, engagement with the wider UK community via EPSRC\nfunded research programmes (both existing such as the SUPERGEN Energy Storage Hub and nascent, such as the Faraday Challenge hub) will stimulate new research opportunities crossing boundaries, generating new research ideas and establishing new links with new colleagues.\n\n\n"], "status": ["", "Closed"]}
|
|
April 11, 2022, 1:48 a.m. |
Added
35
|
{"external_links": [26097]}
|
|
April 11, 2022, 1:48 a.m. |
Created
35
|
[{"model": "core.project", "pk": 7204, "fields": {"owner": null, "is_locked": false, "coped_id": "2cf159f2-557c-4fbc-a2fd-5a20483f25fa", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 33185, "created": "2022-04-11T01:44:58.022Z", "modified": "2022-04-11T01:44:58.022Z", "external_links": []}}]
|
|