Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)

Find Similar History 45 Claim Ownership Request Data Change Add Favourite

Title
Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)

CoPED ID
0f54a2ea-f908-4751-abb3-0759b369b167

Status
Closed

Funders

Value
£4,910,460

Start Date
Nov. 1, 2013

End Date
Oct. 31, 2017

Description

More Like This


This research project aims to tackle the barriers inhibiting the rapid introduction of large amounts of low-cost electrical and thermal solar energy generation by driving down the cost per kWh. To do this we will:
* Develop enhanced optical concentrator systems which exhibit improved luminance uniformity over the photovoltaic cell;
* Extend the lifetime of the PV cells to beyond 50 years by the use of active thermoelectric cooling;
* Increase the energy conversion efficiency by linearising the PV cell electrical generation, controlling cell temperature and by implementing enhanced Maximum Power Point Tracking algorithms;
* Integrate a thermal storage system with the PV / TE receiver.
* Capture large amounts of thermal energy from the solar-> electrical conversion process and use this to enhance the efficiency of co-generation plant or displace fossil fuel combustion.

The technology resulting from this 4 year research programme will be commercialised throughout the project life by a number of industrial partners and be equally suited to domestic use or to utility-scale power plants connected to the grid. Such installations will make a significant contribution to the UK meeting its 2020 CO2 reduction targets and help ameliorate the growing problems of energy insecurity and energy poverty.


More Information

Potential Impact:
An efficient and dependable sustainable energy supply will have a profound societal impact. The programme will simultaneously address both electricity production and thermal energy supply for traditional domestic purposes (space and water heating) and assess the potential for enhancing the generating efficiency of co-located fossil fuel plants. At utility scale, the provision of connections to the energy grids (gas and/or electricity) and associated civil works are a major component of overall plant cost. In order to drive down this cost, sharing of infrastructure is essential. Indeed, to maintain electrical power delivery during periods when PV installations suffer low insolation or darkness some alternative means of generating electricity is required. The choice to do so is limited: by massive, costly storage or via reduced fossil fuel dependence. An acceptable socio-economic adoption framework to assure stakeholder buy-in of increased solar energy generation is a vital component of our research programme. A key element of this framework is the investigation of the viability of partially displacing carbon-intensive energy generation with solar thermal systems, recognising the sociological and behavioural issues connected with their uptake. The increasing proliferation of technology required for (and requiring) a high quality electrical supply with reliable operation is directly addressed through this programme: in addition to the initial provision of suitable systems, embedding the knowledge and expertise required to develop and manufacture these systems within the UK is a specific deliverable. Distributed workpackage research activities underpin this deliverable: ultimately it is this which provides the "glue" essential to the creation of a cohesive team.

The technology being developed will, where appropriate, have any IP protected and made available through an open licensing agreement, and we will exploit the technology through U.K. industry. Our industrial partners include Flexsar, European Thermodynamics, SUNAMP, Smarter Grid Solutions, Compound Semiconductors, and several others. As the technology is developed, new U.K. industrial partners and OEMs will be brought on board as required for the supply chain to manufacture the system which is applicable to the UK consumer / domestic market and utility providers. Commercial confidence in the technology will be underpinned by independent performance validation by the National Physical Laboratory. This will directly impact on the UK sustainable energy targets, especially those for renewable energy for electricity and heating. Microgeneration systems such as can be further developed from what we propose offer an attractive proposition to numerous SMEs in the manufacturing and service sectors: widespread deployment of these systems coupled to other emerging technologies such as smart metering can make a significant impact to the UK energy budget. Additionally we expect Regional Development Organisations, Scottish Enterprise, DECC, TSB and BIS to be beneficiaries with knowledge from this project in how to implement these solar technology solutions to foreign countries, thereby increasing U.K. exports.

In the longer term as the UK looks abroad for its energy supplies, particularly to the southern EU, the Gulf and sub-saharian Africa, people with first-hand experience and understanding connected with the generation of solar energy will play an invaluable role in the construction, support, operation and maintenance of future plant. This programme seeks in part to address this future requirement through the installation of exemplar systems in Heriot Watt University's campus in Dubai. This will prove to be an invaluable source of information and continue to be a useful test-bed representative of such geographical locations long after this project ends.

Andrew Knox PI_PER
Tapas Mallick COI_PER
Douglas Paul COI_PER
Duncan Gregory COI_PER
Subramanian Arjunan COI_PER
Min Gao COI_PER
Martin Macauley COI_PER
Manosh Paul COI_PER
Robert Freer COI_PER

Subjects by relevance
  1. Solar energy
  2. Production of electricity
  3. Energy
  4. Renewable energy sources
  5. Energy production (process industry)
  6. Energy efficiency
  7. Power plants
  8. Technological development
  9. Electric drives
  10. Costs

Extracted key phrases
  1. Scalable Solar Thermoelectrics
  2. Thermal solar energy generation
  3. Thermal energy supply
  4. UK sustainable energy target
  5. Dependable sustainable energy supply
  6. Intensive energy generation
  7. UK energy budget
  8. Energy conversion efficiency
  9. Solar thermal system
  10. Pv cell electrical generation
  11. Energy grid
  12. Energy poverty
  13. Energy insecurity
  14. Renewable energy
  15. Year research programme

Related Pages

UKRI project entry

UK Project Locations