History of changes to: Nanocoating improvements for Hydrogen Generation
Date Action Change(s) User
Nov. 27, 2023, 2:11 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:02 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:32 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:30 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:30 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:31 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:33 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:34 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:33 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:25 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:28 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:32 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:27 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:30 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:36 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:27 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:33 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:29 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:25 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:08 a.m. Created 43 [{"model": "core.projectfund", "pk": 29087, "fields": {"project": 6304, "organisation": 4, "amount": 7824, "start_date": "2022-01-01", "end_date": "2022-03-30", "raw_data": 47647}}]
Jan. 28, 2023, 11:08 a.m. Created 40 [{"model": "core.projectperson", "pk": 54474, "fields": {"project": 6304, "person": 12779, "role": "PM_PER"}}]
Jan. 28, 2023, 10:51 a.m. Updated 35 {"status": ["Active", "Closed"]}
Jan. 28, 2023, 10:51 a.m. Added 35 {"external_links": []}
April 11, 2022, 3:47 a.m. Created 43 [{"model": "core.projectfund", "pk": 21219, "fields": {"project": 6304, "organisation": 4, "amount": 7824, "start_date": "2022-01-01", "end_date": "2022-03-30", "raw_data": 29415}}]
April 11, 2022, 3:47 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 80366, "fields": {"project": 6304, "organisation": 7093, "role": "PARTICIPANT_ORG"}}]
April 11, 2022, 3:47 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 80365, "fields": {"project": 6304, "organisation": 571, "role": "PARTICIPANT_ORG"}}]
April 11, 2022, 3:47 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 80364, "fields": {"project": 6304, "organisation": 7093, "role": "LEAD_ORG"}}]
April 11, 2022, 3:47 a.m. Created 40 [{"model": "core.projectperson", "pk": 49571, "fields": {"project": 6304, "person": 7759, "role": "PM_PER"}}]
April 11, 2022, 1:48 a.m. Updated 35 {"title": ["", "Nanocoating improvements for Hydrogen Generation"], "description": ["", "\nOxford nanoSystems Ltd (OnS) is a high-tech start-up that spent the past 6 years developing nanoFLUX -- a nano-coating which dramatically improves the efficiency of two-phase heat-exchangers, such as evaporators. Our core technology, nanoFLUX is a highly-porous coating that enhances evaporative heat transfer by significantly increasing the density of nucleation sites on a surface. Unlike mechanical and sintered enhancements, nanoFLUX can be applied to internal surfaces and intricate micro-scale structures.\n\nLooking towards future applications, we acknowledge the UK's drive for sustainable energy. There is a growing demand for electrolysers that produce green hydrogen for energy storage. From the existing electrolysis methods are two of interest: PEM and alkaline electrolysers (AWE). PEM electrolysers have certain advantages including compact size, the ability to deal with a variable/intermittent renewable power source and the purity/ pressure of the hydrogen generated. However, PEM electrolysers require expensive noble metal catalysts at the electrodes. Alkaline electrolysers use lower-cost materials (e.g. nickel electrodes) and can offer the potential to process saline water. The downside is the efficiency and performance are less than the PEM electrolysers. OnS will focus on AWE, because it is the most mature technology and we believe our technology is able to substantially improve the efficiency of the process.\n\nIn this project we will use a hierarchical structure including nanoFLUX to enhance the cathode electrode. This will reduce the reaction overpotential by enhancing bubble nucleation and release of hydrogen. As a result, more electrolysis reactions are possible and the efficiency of the whole system will be greatly enhanced. Currently there are no technologies on the market that can offer a low cost, easy applicable solution.\n\nWe need to quantify nanoFLUX performance in AWE hydrogen bubble formation in comparison to uncoated or SotA samples. To achieve this, NPL will design a flow cell test rig and provide independent measurements. This will enable OnS to offer our coating service to electrolyser manufacturers and thus providing the company with an additional revenue stream.\n\nThe output of the project will be a report detailing the performance and accelerated lifetime testing on the coating material in AWE application. A further output will be a new test rig at NPL to allow testing of hydrogen bubble formation, and know-how in surface area measurements of coatings on substrates. This will allow NPL to expand the range of services it can offer.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Active"]}
April 11, 2022, 1:48 a.m. Added 35 {"external_links": [23271]}
April 11, 2022, 1:48 a.m. Created 35 [{"model": "core.project", "pk": 6304, "fields": {"owner": null, "is_locked": false, "coped_id": "b0bed05e-10d0-4dad-b669-876bbca001bb", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 29400, "created": "2022-04-11T01:42:55.927Z", "modified": "2022-04-11T01:42:55.927Z", "external_links": []}}]