Advances made in medical science have led to an increasing number of implantable devices, which need miniaturised, implantable and lowpower power sources to support their operation. Fuel cell research and development has enormous potential to revolutionise power sources. Biofuel cells use biocatalysts to convert chemical energy into electrical energy and offer specific advantages over other renewable energy conversion methods. Thus the aim of this project is to develop an implantable, miniature, long-life and low-power fuel cell. Although there is promise in biofuel cells there are a number of problems and challenges to be overcome, which include development of suitable enzyme electrocatalysts and miniaturisation of compact cell systems. In the proposed research, the focus will be on developing more efficient novel enzyme electrodes by investigating new methods for immobilising enzymes onto electrode substrates and modifying enzymes and mediators. The programme will research novel systems, based on nano-carbons and membrane-less fuel cells, to create compact low cost power sources. The programme involves collaboration with a leading International research group in North America and the medical school and nanotechnology centre at Newcastle. Furthermore the application of carbon nanotubes in biofuel cells makes possible the development of nano fuel cells for powering nano devices