Title
UK Consortium on Turbulent Reacting Flows (UKCTRF)

CoPED ID
5c68ba5e-334f-4b25-b0d7-37f8baf9cb89

Status
Closed


Value
£40,686

Start Date
Jan. 8, 2014

End Date
Feb. 28, 2017

Description

More Like This


The proposed UK Consortium on Turbulent Reacting Flows will perform high-fidelity computational simulations (i.e. Reynolds Averaged Navier-Stokes simulations (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS)) by utilising national High Performance Computing (HPC) resources to address the challenges related to energy through the fundamental physical understanding and modelling of turbulent reacting flows. Engineering applications range from the formulation of reliable fire-safety measures to the design of energy-efficient and environmentally-friendly internal combustion engines and gas turbines. The consortium will serve as a platform to collaborate and share HPC expertise within the research community and to help UK computational reacting flow research to remain internationally competitive. The proposed research of the consortium is divided into a number of broad work packages, which will be continued throughout the duration of the consortium and which will be reinforced by other Research Council and industrial grants secured by the consortium members. The consortium will also support both externally funded (e.g. EU and industrial) and internal (e.g. university PhD) projects, which do not have dedicated HPC support of their own.
The consortium will not only have huge intellectual impact in terms of fundamental physical understanding and modelling of turbulent reacting flows, but will also have considerable long-term societal impact in terms of energy efficiency and environmental friendliness. Moreover, the cutting edge computational tools developed by the consortium will aid UK based manufacturers (e.g. Rolls Royce and Siemens) to design safe, reliable, energy-efficient and environmentally-friendly combustion devices to exploit the expanding world-wide energy market and boost the UK economy. Last but not least, the proposed collaborative research lays great importance on the development of highly-skilled man-power in the form of Research Associates (RAs) and PhD students of the consortium members, who in turn are expected to contribute positively to the UK economy and UK reacting flow research for many years to come.

Xi Jiang PI_PER

Subjects by relevance
  1. Simulation
  2. Energy efficiency
  3. High-performance computing
  4. Simulators
  5. Hydrodynamics

Extracted key phrases
  1. UK Consortium
  2. UK computational
  3. UK economy
  4. Turbulent Reacting Flows
  5. Fidelity computational simulation
  6. Flow research
  7. Consortium member
  8. Collaborative research
  9. Wide energy market
  10. Research community
  11. Friendly internal combustion engine
  12. Edge computational tool
  13. E.g. university phd
  14. Energy efficiency
  15. Reynolds Averaged Navier

Related Pages

UKRI project entry

UK Project Locations