InAsNSb Dilute Nitride Materials for Mid-infrared Devices & Applications

Find Similar History 39 Claim Ownership Request Data Change Add Favourite

Title
InAsNSb Dilute Nitride Materials for Mid-infrared Devices & Applications

CoPED ID
bddb3d36-0f0f-447f-afdf-df0bc11dd516

Status
Closed

Funders

Value
£740,650

Start Date
Aug. 14, 2012

End Date
July 30, 2016

Description

More Like This


We aim to achieve a breakthrough in the performance of "dilute nitride" semiconductor materials to enable the development of novel light sources and photodetectors which can operate in the mid-infrared spectral range. The 3-5 um wavelength range is technologically important because it is used for applications including; remote gas sensing, range-finding and night vision, bio-medical imaging for diagnosis in healthcare and sensitive detection in optical spectroscopy.
However, the development of instrumentation is limited by the availability of efficient, affordable light sources and photodetectors, which is directly determined by the semiconductor materials which are currently available. By introducing small amounts (~ 1%) of N into InAs(Sb) we have shown that it is possible to access the mid-infrared using a new (dilute nitride) semiconductor and we are now seeking to engineer its band structure in order to significantly enhance the material's optical properties and increase quantum efficiency for light detection and emission.

To enable the development of new photodetectors we will exploit the sensitivity of the conduction band to the resonant interaction of the N-level with the extended states of the host InAsSb crystal lattice to tailor the photoresponse and create a near ideal situation for electron acceleration and avalanche multiplication, resulting in a much larger detectable signal. To minimise the unwanted processes causing excessive noise and dark current, which compete with the avalanche multiplication and light detection in the detector, we shall arrange for the avalanche multiplication to be initiated by only one carrier type (electrons in our case). Many applications rely on the detection of very weak signals consisting of only a few photons. Conventional photodiodes have a limited sensitivity, especially if high speed detection is needed. In applications which are "photon starved", avalanche photodiodes (APDs) can provide an effective solution. However, at present effective avalanche multiplication in the mid-infrared spectral range can only be obtained by using exotic CdHgTe (CMT) semiconductor alloys. The resulting detectors require cooling, thus making CMT-based APDs prohibitively expensive for all except military applications. Simpler fabrication, low noise, low operating voltage, inexpensive manufacturing and room temperature operation, together with monopolar electron ionisation are all significant advantages of APDs based on the dilute nitride materials compared to existing technologies. Similarly, we shall enable the development of more efficient mid-infrared light sources. By adjusting the N content within InAsN(Sb) quantum wells and carefully tailoring the residual strain and carrier confinement, we shall be able to defeat competing non-radiative recombination processes whilst simultaneously enhancing the light generation efficiency. These novel quantum wells would then form the basis of the active region from where the light is generated, either within an LED or a diode laser. Currently mid-infrared LED efficiency is low at room temperature, and with the improvements which we shall deliver; we envisage that devices with significantly higher dc output power will be developed following our lead. Mid-infrared diode lasers incorporating our strained dilute nitride quantum wells are also expected to exhibit a reduced threshold current and could offer an affordable alternative to existing technology, especially in the 3-4 um spectral range. We will produce prototype photodetectors and LEDs and use these to demonstrate the above-mentioned avalanche behaviour and quantum efficiency improvements respectively. We shall validate our dilute nitride materials and structures in close collaboration with our collaborators at NPL, SELEX, CST and INSTRO to evaluate performance for use in practical applications and help ensure uptake of our technology.


More Information

Potential Impact:
The mid-infrared spectral region contains the unique vibration-band spectral signatures of many important compounds. With the benefit of our device-quality dilute nitride materials, we shall enable the development of affordable mid-infrared sources and high sensitivity detectors. We envisage wide-ranging impacts through the development of new products and procedures that will generate wealth creation for the UK economy; subsequent development of instrumentation to improve homeland security, biomedical and environmental monitoring to enhance healthcare and quality of life in the workplace and in the environment; scientific advancement leading to substantial generation of new knowledge as well as effective training and professional development of researchers.
Our dilute nitride materials development will unlock applications for mid-infrared sources and detectors. Commercial opportunities will be developed through collaboration with NPL, SELEX, CST and INSTRO. These and other UK manufacturers will be able to design and produce new instrumentation to access sizeable new markets based on our fundamental materials development. For example, there is increasing interest in realising sensitive, cost effective instrumentation for widespread monitoring of air quality in oil refineries, landfill sites, chemical plants etc. There is a substantial value in environmental monitoring concentrations of greenhouse, toxic and flammable gases such as CO2, CH4 and VOCs over large areas (using DIAL) to map their cycles and identify sources and sinks. Our dilute nitride materials will enable the development of novel mid-infrared sources and detectors for remote sensing and enhanced gas monitoring capabilities over larger areas and from greater distances to achieve better air quality and a positive environmental impact on society.
In the longer term we envisage high performance APDs and 2D APD arrays with low production cost for integration into next generation mid-infrared imaging and range-finding equipment, providing powerful defence tools to identify concealed explosive threats and to improve vehicle collision avoidance. We anticipate new instruments for healthcare based on non-invasive measurement of proteins and bio-markers, while superior infrared detection of drugs and bio-agents will help combat terrorist threats. Hence our research has the potential to impact a very wide community by contributing towards the development of new technologies for improved air quality, healthcare, national defence and threat detection capabilities. We shall realize the above impacts through the effective involvement with industry from the outset as outlined in our impact plan.
We shall uncover a wealth of new scientific information which will significantly enhance understanding and impact strongly on the scientific community. Much fundamental information about InAsSbN and samples of our epitaxial material will be provided to academic colleagues (e.g. in Surrey, Hull, Warwick, Taiwan, Wroclaw Bristol, Dresden etc.). The project will also provide excellent training for post-doc researchers in epitaxial growth and characterisation of dilute nitrides and cutting-edge device physics. All staff including the senior researchers at Lancaster, Sheffield, Nottingham and the industrial partners will benefit from the collaboration and gain from the underpinning strengths of the respective partner institutions.

Anthony Krier PI_PER
Andrew Marshall COI_PER
Qian Zhuang COI_PER

Subjects by relevance
  1. Lasers
  2. Semiconductors
  3. Remote sensing
  4. Efficiency (properties)
  5. Spectroscopy
  6. Measurement
  7. Greenhouse gases
  8. Optoelectronics
  9. Measuring methods

Extracted key phrases
  1. InAsNSb Dilute Nitride Materials
  2. Infrared light source
  3. Infrared Devices
  4. Infrared spectral range
  5. Dilute nitride material development
  6. Superior infrared detection
  7. Infrared source
  8. Infrared spectral region
  9. Infrared diode laser
  10. Infrared imaging
  11. Quality dilute nitride material
  12. Fundamental material development
  13. Novel light source
  14. Affordable light source
  15. Semiconductor material

Related Pages

UKRI project entry

UK Project Locations