History of changes to: From Processing to Simulated In-Reactor Performance of Zr Cladding.
Date Action Change(s) User
Nov. 27, 2023, 2:12 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:02 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:33 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:31 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:30 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:31 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:33 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:35 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:34 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:25 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:27 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:29 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:33 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:27 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:31 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:36 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:27 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:34 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:29 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:24 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:26 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:08 a.m. Created 43 [{"model": "core.projectfund", "pk": 25632, "fields": {"project": 2819, "organisation": 2, "amount": 24479, "start_date": "2016-06-30", "end_date": "2020-06-29", "raw_data": 40304}}]
Jan. 28, 2023, 10:51 a.m. Added 35 {"external_links": []}
April 11, 2022, 3:46 a.m. Created 43 [{"model": "core.projectfund", "pk": 17735, "fields": {"project": 2819, "organisation": 2, "amount": 24479, "start_date": "2016-06-30", "end_date": "2020-06-29", "raw_data": 13022}}]
April 11, 2022, 3:46 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 67291, "fields": {"project": 2819, "organisation": 254, "role": "COLLAB_ORG"}}]
April 11, 2022, 3:46 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 67290, "fields": {"project": 2819, "organisation": 1886, "role": "LEAD_ORG"}}]
April 11, 2022, 3:46 a.m. Created 40 [{"model": "core.projectperson", "pk": 41669, "fields": {"project": 2819, "person": 4208, "role": "PI_PER"}}]
April 11, 2022, 1:47 a.m. Updated 35 {"title": ["", "From Processing to Simulated In-Reactor Performance of Zr Cladding."], "description": ["", "\nNuclear energy will play a critical role in the future of secure, affordable and low-carbon power generation. The UK is committed to a greenhouse emissions target of 80% of pre-1990 levels by 2050 and as part of this, between now and then, it is likely that the percentage of power generation via nuclear will have to increase by somewhere between two- and three-times.\n\nThe vast majority of nuclear power is generated by light water nuclear reactors. These use cladding made from various types of zirconium alloy to contain ('clad') nuclear fuel, creating a barrier between highly active fuel/fission products and the coolant. Zirconium is considered an ideal material for this purpose, as it has excellent corrosion resistance properties and a small neutron cross section, meaning that it has a low rate of neutron absorption. These properties make zirconium alloys fundamentally more suitable than many other materials in reactor conditions.\n\nThere is still much more to be learnt about the behaviour and durability of zirconium alloys, in order to enhance their performance and the efficiency of nuclear power generation. If we gain further understanding about how these materials behave in a nuclear reactor, we can more accurately predict the 'life' of the clad and even develop new, more sophisticated alloys - advancements which can minimise new nuclear waste production and further enhance fuel and reactor safety.\n\nZirconium alloy research is therefore at the heart of nuclear power generation and safety. Within this context, this project aims to develop increased understanding in the field of zirconium processing and its relationship to in-reactor performance. The UK-India Civil Nuclear Collaboration is an on-going initiative to promote cooperative research in the area of nuclear energy, and this Phase III project builds upon a highly successful project undertaken in Phase I. The previous collaboration, between the University of Manchester and the Bhabha Atomic Research Centre (BARC) in India, made significant developments in the understanding of zirconium alloys, through both experimental and modelling work. This work has already had direct relevance to, and application by, the nuclear industry.\n\nThis project aims to directly follow-on from this work, adopting a 'cradle-to-grave' approach intended to gain further understanding about the in-reactor performance of zirconium, including how the initial 'processing' of the material might impact on its properties. The proposed work will again be carried-out with partners at BARC, as well as at the Indira Gandhi Centre for Atomic Research (IGCAR).\n\nOnce new hypotheses about zirconium are developed, including potential new alloy compositions, these must be thoroughly tested in reactor conditions before real-world application. This is a costly and time-consuming process, with few test reactors available to researchers and the costs/experimental difficulties associated with working on radioactive material. Partly in response to this, nearly £30m has been invested into the development of the University of Manchester's Dalton Cumbrian Facility (DCF), designed to allow research on irradiated and activated materials.\n\nDCF will enable the other key aspect of this project: the development of novel experimental set-ups (pioneered at the University of Michigan) at both DCF and IGCAR. These experiments will allow the investigation of material degradation during irradiation, mimicking the conditions experienced in reactors without producing radioactive samples, and so drive forward accurate, practical understanding of zirconium performance, enhancing efficient, safe nuclear power generation.\n\nThis project brings together outstanding capabilities and expertise from the UK (Manchester and Sheffield) and India (BARC and IGCAR), enabling a unique research programme that will have impact for the nuclear industry and research, as well as helping to develop new experimental techniques for the field.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Closed"]}
April 11, 2022, 1:47 a.m. Added 35 {"external_links": [10803]}
April 11, 2022, 1:47 a.m. Created 35 [{"model": "core.project", "pk": 2819, "fields": {"owner": null, "is_locked": false, "coped_id": "fa02a46d-032d-4101-9954-2d30651a12fb", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 13007, "created": "2022-04-11T01:34:58.853Z", "modified": "2022-04-11T01:34:58.853Z", "external_links": []}}]