History of changes to: Demonstrator for robotic inspection and maintenance of offshore wind turbine blades
Date Action Change(s) User
Nov. 27, 2023, 2:11 p.m. Added 35 {"external_links": []}
Nov. 20, 2023, 2:02 p.m. Added 35 {"external_links": []}
Nov. 13, 2023, 1:33 p.m. Added 35 {"external_links": []}
Nov. 6, 2023, 1:30 p.m. Added 35 {"external_links": []}
Aug. 14, 2023, 1:30 p.m. Added 35 {"external_links": []}
Aug. 7, 2023, 1:31 p.m. Added 35 {"external_links": []}
July 31, 2023, 1:33 p.m. Added 35 {"external_links": []}
July 24, 2023, 1:34 p.m. Added 35 {"external_links": []}
July 17, 2023, 1:33 p.m. Added 35 {"external_links": []}
July 10, 2023, 1:25 p.m. Added 35 {"external_links": []}
July 3, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 26, 2023, 1:25 p.m. Added 35 {"external_links": []}
June 19, 2023, 1:26 p.m. Added 35 {"external_links": []}
June 12, 2023, 1:28 p.m. Added 35 {"external_links": []}
June 5, 2023, 1:32 p.m. Added 35 {"external_links": []}
May 29, 2023, 1:27 p.m. Added 35 {"external_links": []}
May 22, 2023, 1:28 p.m. Added 35 {"external_links": []}
May 15, 2023, 1:30 p.m. Added 35 {"external_links": []}
May 8, 2023, 1:36 p.m. Added 35 {"external_links": []}
May 1, 2023, 1:27 p.m. Added 35 {"external_links": []}
April 24, 2023, 1:34 p.m. Added 35 {"external_links": []}
April 17, 2023, 1:29 p.m. Added 35 {"external_links": []}
April 10, 2023, 1:24 p.m. Added 35 {"external_links": []}
April 3, 2023, 1:26 p.m. Added 35 {"external_links": []}
Jan. 28, 2023, 11:08 a.m. Created 43 [{"model": "core.projectfund", "pk": 24445, "fields": {"project": 1631, "organisation": 4, "amount": 747822, "start_date": "2019-03-01", "end_date": "2021-02-28", "raw_data": 38023}}]
Jan. 28, 2023, 11:08 a.m. Created 40 [{"model": "core.projectperson", "pk": 53775, "fields": {"project": 1631, "person": 11508, "role": "PM_PER"}}]
Jan. 28, 2023, 10:51 a.m. Added 35 {"external_links": []}
April 11, 2022, 3:45 a.m. Created 43 [{"model": "core.projectfund", "pk": 16547, "fields": {"project": 1631, "organisation": 4, "amount": 747822, "start_date": "2019-03-01", "end_date": "2021-02-28", "raw_data": 7142}}]
April 11, 2022, 3:45 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 62428, "fields": {"project": 1631, "organisation": 812, "role": "PARTICIPANT_ORG"}}]
April 11, 2022, 3:45 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 62427, "fields": {"project": 1631, "organisation": 1579, "role": "PARTICIPANT_ORG"}}]
April 11, 2022, 3:45 a.m. Created 41 [{"model": "core.projectorganisation", "pk": 62426, "fields": {"project": 1631, "organisation": 1579, "role": "LEAD_ORG"}}]
April 11, 2022, 3:45 a.m. Created 40 [{"model": "core.projectperson", "pk": 38574, "fields": {"project": 1631, "person": 1782, "role": "PM_PER"}}]
April 11, 2022, 1:47 a.m. Updated 35 {"title": ["", "Demonstrator for robotic inspection and maintenance of offshore wind turbine blades"], "description": ["", "\n"Offshore wind turbines operate in harsh and extreme environments such as the North Sea. As blades continue getting larger, their tip speeds can exceed 100m/s. At these speeds, any particulates in the air such as rain, dust, salt, insects, etc. can wear away the surface of a blade's leading edge, a phenomenon known as ""leading edge erosion"" (LEE). This, in turn, alters the blade's aerodynamic shape, affecting its efficiency and potentially exposing the blade to further and more serious damage, thereby reducing its working life.\n\nWhilst the extent and nature of contributing factors to LEE are not yet fully understood, it can be said that at some point in their lifespan, all wind turbine blades will suffer from some form or degree of LEE which will need to be addressed. Maintaining blades in the offshore wind sector is an expensive and dangerous job where, typically, highly skilled rope access technicians are required to scale down the blades to carry out leading edge repairs.\n\nHaving successfully proven the concept in Phase 1 of the Innovate UK funding round, in this project, BladeBug Limited will continue its work with the Offshore Renewable Energy Catapult to develop, build and test a complete, walking robotic system designed specifically to carry out a number of these detailed inspections and repetitive repairs on the leading edges of wind turbine blades.\n\nThe ability to perform these tasks remotely will free up time of skilled rope access technicians to undertake specialist repairs or upgrades to blades that only they can do. More blades could then be inspected and treated in the same time frames, maximising the electrical output of the turbines and, as a result, increasing revenues to turbine owners as well as the environmental benefit to everyone in CO2 savings."\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Closed"]}
April 11, 2022, 1:47 a.m. Added 35 {"external_links": [5992]}
April 11, 2022, 1:47 a.m. Created 35 [{"model": "core.project", "pk": 1631, "fields": {"owner": null, "is_locked": false, "coped_id": "b8eb49da-8df6-4ceb-90bd-63c93fe5c5a0", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 6946, "created": "2022-04-11T01:32:13.093Z", "modified": "2022-04-11T01:32:13.093Z", "external_links": []}}]