History of changes to: ELEVATE (ELEctrochemical Vehicle Advanced TEchnology)
Date Action Change(s) User
Feb. 13, 2024, 4:20 p.m. Created 43 [{"model": "core.projectfund", "pk": 67288, "fields": {"project": 15543, "organisation": 2, "amount": 3266366, "start_date": "2015-01-13", "end_date": "2019-07-12", "raw_data": 175667}}]
Jan. 30, 2024, 4:25 p.m. Created 43 [{"model": "core.projectfund", "pk": 60109, "fields": {"project": 15543, "organisation": 2, "amount": 3266366, "start_date": "2015-01-13", "end_date": "2019-07-12", "raw_data": 150492}}]
Jan. 2, 2024, 4:16 p.m. Created 43 [{"model": "core.projectfund", "pk": 52973, "fields": {"project": 15543, "organisation": 2, "amount": 3266366, "start_date": "2015-01-13", "end_date": "2019-07-12", "raw_data": 130776}}]
Dec. 5, 2023, 4:25 p.m. Created 43 [{"model": "core.projectfund", "pk": 45719, "fields": {"project": 15543, "organisation": 2, "amount": 3266366, "start_date": "2015-01-13", "end_date": "2019-07-11", "raw_data": 95118}}]
Nov. 27, 2023, 2:16 p.m. Added 35 {"external_links": []}
Nov. 21, 2023, 4:43 p.m. Created 43 [{"model": "core.projectfund", "pk": 38449, "fields": {"project": 15543, "organisation": 2, "amount": 3266366, "start_date": "2015-01-13", "end_date": "2019-07-11", "raw_data": 80013}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115983, "fields": {"project": 15543, "organisation": 12264, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115982, "fields": {"project": 15543, "organisation": 11918, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115981, "fields": {"project": 15543, "organisation": 11211, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115980, "fields": {"project": 15543, "organisation": 12782, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115979, "fields": {"project": 15543, "organisation": 11135, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115978, "fields": {"project": 15543, "organisation": 11170, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115977, "fields": {"project": 15543, "organisation": 10916, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115976, "fields": {"project": 15543, "organisation": 11817, "role": "PP_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115975, "fields": {"project": 15543, "organisation": 16152, "role": "COLLAB_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 41 [{"model": "core.projectorganisation", "pk": 115974, "fields": {"project": 15543, "organisation": 14371, "role": "LEAD_ORG"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72873, "fields": {"project": 15543, "person": 17451, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72872, "fields": {"project": 15543, "person": 14221, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72871, "fields": {"project": 15543, "person": 20163, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72870, "fields": {"project": 15543, "person": 17860, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72869, "fields": {"project": 15543, "person": 16290, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72868, "fields": {"project": 15543, "person": 14217, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72867, "fields": {"project": 15543, "person": 21489, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72866, "fields": {"project": 15543, "person": 14218, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72865, "fields": {"project": 15543, "person": 14215, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72864, "fields": {"project": 15543, "person": 17235, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72863, "fields": {"project": 15543, "person": 14018, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72862, "fields": {"project": 15543, "person": 14267, "role": "COI_PER"}}]
Nov. 21, 2023, 4:43 p.m. Created 40 [{"model": "core.projectperson", "pk": 72861, "fields": {"project": 15543, "person": 19296, "role": "PI_PER"}}]
Nov. 20, 2023, 2:06 p.m. Updated 35 {"title": ["", "ELEVATE (ELEctrochemical Vehicle Advanced TEchnology)"], "description": ["", "\nOne of the most promising routes for decarbonising the transport sector is the use of electrochemical power and storage technologies (e.g. fuel cells, supercapacitors and batteries). However, challenges persist in terms of performance, durability, cost, integration together within vehicles (hybridisation) and interfacing with the electricity grid. \nThis project will deliver a technology innovation chain that adopts a material-to-system approach. We will identify, optimise and scale-up new materials into devices, develop novel diagnostic techniques in the lab and for on-board monitoring and control, and validate the technologies in a hybrid vehicle.\nThe objectives will be met by five interconnected work packages (WPs): Hierarchical Structured Electrodes (WP1) will combine the nano-micro scale structuring of lithium ion battery (LIB) materials with meso-scale electrode structuring to create novel hierarchical structured electrodes. The target will be to produce a range of new high power and high energy density combinations, achieved through a rational design approach based on arrangements of porosities and materials. Critical to this work will be close interaction with WP2 where meso-structure will be characterized by X-ray tomography. These 3D data will show to what extent manufacturing designs are realized (WP3), help to rationalize electrochemical performance, and guide subsequent iterations of design-make-test in a way not previously possible. \nDiagnostics and Correlative Metrology (WP2) will develop new methods of analysis to provide an unparalleled level of information about the internal working of batteries, fuel cells and supercapacitors and provide a mechanism for improving device design and materials formulation through a tightly integrated programme with WP1 on materials and WP3 on devices. \nSystem Level Integration and Evaluation (WP3), sits in a central position between materials and analysis in WP1 and 2 and grid and vehicle interfacing in WP4 and 5. This WP will integrate new materials into functioning devices and develop understanding of their performance and degradation characteristics. To examine on-board performance, real-time, system-level diagnostics and prognostics (to include, system models, state estimators and data management) will be developed to ensure safety, enable fault detection and extend system life.\nIn WP4, Optimised Design of High-Rate Grid Interface, the interface of vehicle with the grid will be considered, with a particular focus on high-rate charging of electric vehicles (EV), whilst also minimising the grid impact of such high power chargers. This is envisaged via use of local off-vehicle energy storage at the charging station, to permit rapid recharge of EVs to the new high capacity on-vehicle energy stores (e.g. from WP1). This WP will study the optimal off-vehicle energy storage technology (e.g. supercapacitors, batteries, flow cells), characterise and diagnose the energy store performance at high rates and perform laboratory scale testing of a rapid charger.\nFinally, in WP5, In-Vehicle Aspects, Validation Platform and Impact, the newly-evolved electrochemical energy storage packages developed in earlier WPs will be validated in a hybrid vehicle. The data generated and derived equivalent circuits will be fed back into the design and innovation cycle, leading to better materials and devices. Findings will be delivered to project partners, and ultimately back to UK industry.\nThe cross-disciplinary nature of the work and collaborative approach is ingrained in the work-plan, where, as well as having individual responsibility for a specific aspect of the work, each partner will contribute to at least two work-packages.\nWe have strong industry support and will form an Industrial Advisory Committee to provide industry perspective and help us navigate the most relevant and impactful course through the project.\n\n"], "extra_text": ["", "\n\nPotential Impact:\nImpact Summary\n\nThe beneficiaries of this project fall into three broad categories: \n\nSociety\n- The UK Public will benefit through more energy efficient personal and commercial transport, with the resulting CO2 emission, cost reductions and air quality improvements (with consequent improvements in public health). They will also benefit from enhanced electric recharging capability for electric/hybrid vehicles, alleviating range anxiety and improving the user experience and utilisation of clean vehicles.\n- Fleet Users will benefit through bespoke educational programmes to equip them with the tools necessary to evaluate PHEVs for their specific usage, leading to reduced energy costs from fully optimised vehicles.\n- National and local government and policy makers will benefit from contributions to CO2 reduction targets and greater confidence in decisions affecting transport, transport infrastructure and application of energy storage technology.\n\nThe Economy \n- The automotive industry will benefit from better decision making during product development leading to improved products created with more efficient processes and consequently an increase in UK competitiveness in the technology and development of hybrid vehicles. Both established OEMs, and especially new entrant OEMs (of which there are an increasing number in the UK) will benefit from the open access to the results, learning and broad range of expertise. The project will also act as a mechanism through which these new entrants can share learning and experience. Similarly, component suppliers will benefit from reduced costs in development and easy access to both knowledge at a vehicle level, and the implications both on and from their product design. \n- Engineering companies outside of the automotive sector will also benefit through enhanced knowledge in the optimisation of systems involving energy storage, for example renewable energy, rail and marine applications.\n- Energy storage is a driver of economic growth, with the market for lithium batteries alone predicted to be £60 bn. within 20 years and the failure to deploy grid-scale energy storage leading to high system costs from 2030. This project will enable these opportunities, working directly with high value added companies which will be immediate beneficiaries from our project. We provide statements of support detailing the involvement of companies representing the major stakeholders: from automotive manufacture to energy storage specialists and energy supply. These include major exploiters and employers.\n- The electricity industry, including both network and generation elements, will benefit from new technology to minimise the impact of rapid recharging of EVs/PHEVs, whilst offering grid support through vehicle-to-grid functionality, demand prediction and management.\n\nPeople\n- The project team will benefit from working on an exciting and leading project with a very broad range of organisations involved - it will aid their personal and career development. They will all benefit through enhanced research profile, but crucially from the shared learning from working together, and the opportunities from significant industrial contribution.\n- Other research institutions, nationally and internationally will benefit from the learning and also the shared knowledge, models and data that will be made available from the project. Student exchanges will also facilitate information flow between targeted institutions.\n- Students at all levels will benefit from the enhanced knowledge and training created by the project members. This will cover taught material and projects, at all levels from basic skills to doctoral level. In particular, the next generation of young engineers (from vehicle technicians to post-graduates) will be targeted, equipping them with the new skills necessary for advanced engineering of hybrid and electric vehicles.\n\n\n"], "status": ["", "Closed"]}
Nov. 20, 2023, 2:06 p.m. Added 35 {"external_links": [61103]}
Nov. 20, 2023, 2:06 p.m. Created 35 [{"model": "core.project", "pk": 15543, "fields": {"owner": null, "is_locked": false, "coped_id": "9d88cd9f-1a45-4733-bf3b-7207a1f524bf", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 79996, "created": "2023-11-20T13:58:46.383Z", "modified": "2023-11-20T13:58:46.383Z", "external_links": []}}]