Title
ISCF Wave 1: Earth-Abundant Metal-Air Batteries

CoPED ID
57f35e35-6a65-4f9b-b227-2cfc92dafecd

Status
Closed


Value
£3,697,390

Start Date
Sept. 30, 2017

End Date
July 31, 2021

Description

More Like This


Industrial Strategy Challenge Fund (ISCF) brings together the UK's world leading research with business to meet the major industrial and societal challenges of our time. Clean and flexible energy or the 'Faraday Challenge' is one of the key themes in which will allow UK businesses to seize the opportunities presented by the transition to a low carbon economy, to ensure the UK leads the world in the design, development and manufacture of batteries for the electrification of vehicles.

To meet the goals of the ISCF will we investigate metal-air batteries using earth abundant metals such as calcium and sodium as the anode and charge carrier that offer a low cost and easily raw material resourced high energy storage battery system. Earth-abundant metal-air batteries potentially offer a much greater energy storage and power capability than current batteries such as lithium ion, in addition to their abundance worldwide. In order to achieve progress in the field of such calcium and sodium batteries and their subsequent development, mechanistic understanding of the cell chemistry and the required materials, and cell structure, needs to be understood. The project will construct Lab-scale test cells that will be tested in oxygen (air) and oxygen(air)/carbon dioxide mixtures. Via utilisation of redox mediators it is envisioned that a metal-air system could be demonstrated that reversibly stores energy via electrochemical conversion of oxygen and carbon dioxide to metal oxides and carbonates.


More Information

Potential Impact:
Research into earth-Abundant Metal-Air batteries has the potential to make a significant impact academically initially & ultimately economically. The programme has huge longer-term applied benefits in the areas of energy storage generating processes of relevance to the chemical & engineering industries. This is confirmed via the letters of support from Faradion, Ionotec, Johnson Matthey, Siemens & Technical Fibre Products. From the start the above industrial partners will receive regular 6 monthly project updates for discussion with the project team, leading to personnel exchange and material evaluation as appropriate. All industrial project partners will be invited to sit on an Industrial Advisory Board that will meet every 6 months to discuss progress towards milestones (see project work plan). Beyond this group, we will work with the Knowledge Centre for Materials Chemistry (KCMC) to ensure the widest possible dissemination of relevant developments to UK chemicals-using and broader industry sectors. KCMC has supported 71 companies in over 100 projects, generating over £6M of industrial funding since 2009. KCMC thus has strong collaborative relationships with many UK-based chemical companies, providing a mechanism for advances in science emerging from the project to be evaluated and where appropriate taken forward for exploitation through engagement of the KCMC Knowledge Transfer (KT) team via individual discussion with companies and themed industry days, using case-study type summaries of both materials and methodologies emerging from the programme prepared by the KT team to maximise impact on potential users. IP will be protected by Business Gateway at ULIV and Science, Agriculture an Engineering Enterprise Team at NEW. LJH has 1 patent and KS 3 patents filed via these mechanisms in the last 5 years. Project advances of societal interest will be disseminated via the ULIV & NEW press office, working with EPSRC as appropriate. The skills & contact network of the project PDRAs will be strongly enhanced by close experiment/theory co-working in this science area, and engagement with the supporting companies and the industry network of KCMC.
The industrial beneficiaries will be chemical and engineering companies. In particular all project partners will benefit from hearing recent data on metal-air battery development, in particular Faradion will benefit from knowledge of novel sodium anodes, Ionotec will benefit from understanding possible new markets for sodium beta alumina solid electrolytes, Johnson Matthey will benefit from knowledge of materials required for the air-cathode, Siemens will benefit from monitoring of potential disruptive energy storage technologies, Technical Fibre Products will benefit from the evaluation of their carbon fibre materials in metal-air battery systems. Society will benefit from the trained personnel emerging from the programme equipped to contribute to UK industry in a high-tech sector. Longer term benefits will arise from the scientific advances enabling enhanced energy storage solutions through the generic impact of enhanced understanding and control of exciting new materials. This programme has long term benefits in reducing the UKs long term carbon dioxide emissions via transportation and as energy storage from renewables such as wind and solar. A very important area for new batteries technologies is in helping to meet the energy challenges of the 21st century, with batteries in particular contributing to energy storage requirements and also "electro-mobility". EPSRC has a strong energy theme, with relevant details laid out in the section "Underpinning Energy Research in Energy Storage Materials". A quarter of all manmade carbon dioxide emissions arise from transportation, any breakthroughs in battery technology regarding significant increases in energy storage (and therefore driving range) with lower cost would allow future electric vehicles (EVs) to become a more attractive to consumers.

Subjects by relevance
  1. Industry
  2. Accumulators
  3. Enterprises
  4. Batteries
  5. Warehousing
  6. Carbon dioxide
  7. Projects
  8. Renewable energy sources

Extracted key phrases
  1. ISCF Wave
  2. High energy storage battery system
  3. Industrial Strategy Challenge Fund
  4. Earth abundant metal
  5. Potential disruptive energy storage technology
  6. Air battery development
  7. Air battery system
  8. Air battery
  9. Enhanced energy storage solution
  10. Energy storage generating process
  11. Great energy storage
  12. Energy storage requirement
  13. New battery technology
  14. Air Batteries
  15. UKs long term carbon dioxide emission

Related Pages

UKRI project entry

UK Project Locations