Towards delay, energy And spectrum-efficient Next Generation wireless netwOrks (TangO)

Find Similar History 12 Claim Ownership Request Data Change Add Favourite

Title
Towards delay, energy And spectrum-efficient Next Generation wireless netwOrks (TangO)

CoPED ID
ce868384-d6a8-48b5-b8f3-c598d8f57c7e

Status
Closed


Value
£474,305

Start Date
Dec. 1, 2016

End Date
March 31, 2018

Description

More Like This


Higher rates, lower latencies, and lower energy consumptions: Future communications systems and most of their applications rely on significant improvement in these three directions which are conflicting in nature. Fast and reliable communication infrastructure is essential for advancements of various industries: from mobile broadband to intelligent automotive cars, from smart cities to smart grids, or from telemedicine to haptic communications. These applications are vital for higher human life quality and rapid economic growth. The prospect of fast future communications will not be possible unless a fine tuning between all of the above three conflicting requirements is achieved, which has proved to be challenging over the past years.

Adaptive radio resource allocation (RRA) techniques that efficiently manage the system resources have shown promising improvements when considering only one or two of these directions. On the other hand, energy harvesting technologies are emerging as a promising solution for reducing energy consumption of the communication devices, while maintaining the system throughput. Despite the challenging nature of improving the system performance in all of the above three directions, because of the recent progress in the adaptive RRA techniques and energy harvesting technologies, it is now the time to tackle this challenge. Coupling the RRA techniques and energy harvesting technologies has a great scope to significantly improve the overall system performance, which is yet to be exploited. This project aims at developing novel cross-layer RRA techniques that benefit from energy harvesting technologies and optimally tune the system parameters to flexibly optimize the trading between rate, delay and energy consumption.


More Information

Potential Impact:
The project impact plan is designed to maximize the impacts of the project results on the potential beneficiaries, listed as

1: Academia: Academic and research communities across different disciplines can benefit from the gained knowledge of this project. Researchers concerned with theoretical and practical aspects of wireless communications and networking, signal processing and low-power communications devices can benefit from the gained knowledge of this project. The project results will be published in several well-known journals and conferences. The PI will present a keynote in CROWN workshop at Lancaster University and will also apply for tutorials in ICC and GlobeCom. Two research visits will be planned to further extend the project's academic impacts.

2: Telecommunication industries: Since the project deals with fundamental requirements of future wireless networks, the project outcomes will be useful for UK and international Telecommunications industries. The results of WP1 provide fundamental and useful understanding of the system performance that is critical for communication systems design and developments. The proposed transmission techniques of WP2-WP4 also provide a foundation for design of future transmission protocols. We utilize our industry link with Rinicom to validate and assess the applicability of our results for practical situations that are concerns of the communication industries. Rinicom will provide us with access to its testbed and platform at its Lancaster location. We will utilize the locality of the company and plan to either visit the company every three months, or invite a member of the company to our meetings at the university. The PhD student will be encouraged to take the intern-ship offer of the company, which will help her/him to gain experience of applying the proposed algorithms of WP2 and WP4 in practical networks settings.

3: Other industries: The merger of different disciplines is bringing into picture possibility of exciting new applications. The transfer of skills through communication links, also coined as haptic communications, requires robotics and communications industries and researchers to work together. The possibilities of very low-power communications devices through energy harvesting is appealing to healthcare services. The sustainable sensor networks through energy harvesting are useful in military applications. The various industries involved with these technologies can indirectly benefit from the outcomes of the project.

4: General public: The ultimate beneficiaries of the project outcomes will be the general public. There are countless applications that can emerge if the communication networks can overcome the current inadequate performance shortfalls. These applications, for example, smart cities, can improve the quality of human life. A project website at Lancaster University domain will be created to provide timely updates of the project news and outcomes to public access. Short technology news will be distributed through Lancaster University news website. We use social media to announce the outcomes, news and events related to the project.

5: Project staff: The project will be an excellent opportunity for the RA who can build on his/her research background and gain valuable research training during the work of the project, interaction with Rinicom, and also through the planned academic visit. The project is also a good opportunity for the PhD student, who will be hired through studentship offered by the SCC as a support for this EPSRC first grant proposal, to gain research and practical skills as working part of a group and through Rinicom intern-ship. Finally, the PI will benefit from the project through gaining experience in project management and preparing a foundation for a longer research program that aims at facilitating a cross-discipline research framework that will focus on enabling new applications for communication systems.

Subjects by relevance
  1. Energy consumption (energy technology)
  2. Communication
  3. Projects
  4. Data communications networks
  5. Wireless networks
  6. Data communication systems

Extracted key phrases
  1. Low energy consumption
  2. Energy harvesting technology
  3. Future communication system
  4. Communication system design
  5. Generation wireless network
  6. Communication network
  7. Wireless communication
  8. Fast future communication
  9. Communication industry
  10. Future wireless network
  11. Project impact plan
  12. Power communication device
  13. Project outcome
  14. Project result
  15. Project news

Related Pages

UKRI project entry

UK Project Locations