Particle Transport and Losses in Sampling Aircraft Gas Turbine Engine Combustion Emissions

Find Similar History 34 Claim Ownership Request Data Change Add Favourite

Title
Particle Transport and Losses in Sampling Aircraft Gas Turbine Engine Combustion Emissions

CoPED ID
789d9c51-146e-4ba9-9e5f-36efd0604af4

Status
Active

Funders

Value
No funds listed.

Start Date
Sept. 20, 2020

End Date
Sept. 29, 2024

Description

More Like This


Aircraft gas turbine engine produce soot emissions through combustion. Soot is considered to have negative impacts on both public health and the environment. To combat the impacts, regulations have been introduced by the ICOA and enforced by international regulators, such as EASA. The regulations - specifically APR6320 - stipulates how to sample and measure the soot particles, and this has led to collaborations between engine manufacturers, regulators, and universities to develop a sampling system. Currently, the sampling system uses aerosol instrumentation to measure the number and the mass of soot particles at the exit plane of the engine. However, the sampling of soot is still largely unquantified due to losses witnessed throughout the system - especially at the probe. Penetration curves indicate that smaller particles are not sampled as they do not penetrate far enough through the sample system. Although there has been various loss models developed (LLCA, UTRC, etc..), small soot particle (below 15 nm in diameter) loss remains uncertain, as the models extrapolate for particles below 15 nm. Due to the size of the soot particles being lost and the temperature gradients between the hot emissions and the sampling system, it is speculated that the losses are mostly due to diffusion and thermophoretic loss mechanism. To fully study small soot particle loss, the sampling point will need to be moved to just outside the combustion chamber. Sampling from this point will isolate small soot particles before they agglomerates and coagulates to form long chains (larger than 15 nm in diameter) and allow a better understanding of soot particle formation processes near the combustion chamber. As sampling from this area has not been done before, there will be several challenges, mainly developing a probe that can withstand the harsh environment (temperatures of 1100 K). This project will be split into two main objectives; experimentally quantifying the soot losses and transport when sampling close to the combustion zone and the development of an 2020/2021 Fergus Lidstone-Lane effective model to account for small soot particles. The experimentation will be conducted using various aerosol instrumentation - CPC for number concentrations, LII and MSS for mass measurements, and DMA and ACC for size measurements. Experimentation will mostly be conducted on various combustion test rigs, where it is easier to isolate specific combustion conditions and allows direct access to the combustion zone. For the modelling, there will be both development of current loss models to account for small soot losses and more advanced 3D CFD models. The first steps of the modelling process will be to challenge current assumptions - such as, assuming all soot has a density of 1 g/cm3 - with theory and experimental results to check the models validity when considering small soot particles. This process will become iterative as new experimental results are obtained and feed into the models. Due to the concerns around emissions, it is key that throughout this project responsible innovation needs to be considered. The main concern is that the unquantified amount of small soot particles being emitted is significantly larger than expected. Resulting in policy change which could be potentially damaging for engine manufacturers, or more likely result in design change for more efficient engines.

University of Manchester LEAD_ORG
Rolls-Royce plc STUDENT_PP_ORG

Paul Williams SUPER_PER
Fergus Lidstone-Lane STUDENT_PER

Subjects by relevance
  1. Emissions
  2. Soot
  3. Gas engine
  4. Aerosols
  5. Combustion engines
  6. Gas turbines
  7. Combustion (active)
  8. Physics
  9. Combustion (passive)

Extracted key phrases
  1. Sampling Aircraft Gas Turbine Engine Combustion Emissions
  2. Small soot particle loss
  3. Aircraft gas turbine engine
  4. Small soot loss
  5. Soot particle formation process
  6. Particle Transport
  7. Soot emission
  8. Small particle
  9. Current loss model
  10. Engine manufacturer
  11. Sample system
  12. Losses
  13. Efficient engine
  14. Thermophoretic loss mechanism
  15. Combustion zone

Related Pages

UKRI project entry

UK Project Locations