Steelmaking generates a range of combustible gases, generally of a low calorific value. Historically the cost of capturing, conditioning and storing these gases significantly exceeded the cost of natural gas. Process equipment developments over time have replaced gas by-product use with natural gas supply.Lowering the Carbon Footprint of steel production and rising energy prices demands a thorough review of energy use on site. Currently the site operates gas fired boilers mainly fired by process gas, generating high pressure steam for electricity generation and feeding a low pressure steam ring main for use across the steelworks. Additional package steam boilers supplement low pressure steam on site.Over decades the steel plant has developed with many changes introduced. Steam use is ubiquitous but it may not be the best option. The purpose of this research is to map current steam use on site and to determine other sources of low grade heat. The current monitoring and control of steam generation and use will be considered and improved control methodology proposed for any chosen system.Corus has commenced investment in excess of 60m to capture, condition and store more process gas, this research is key to determining how best this gas can be utilised on site.Combustible gases produced on site will be researched to determine optimum combustion characteristics, whether conventional combustion or gas turbine. Methods of generating electricity and or steam using low grade heat or process gases will be examined to determine whether these new methods would be preferable and use less energy than the current steam ring main. Alternative thermal cycles, for example Kalina, will be researched to utilise low grade heat for electricty generation and steam or heat raising.If beneficial uses cannot be found for the low grade heat on site, other uses for example district heating will be investigated.