The primary objective of this proposal is the development of novel chemistry/catalysis to optimize the kinetics and extent of dihydrogen evolution from ammonia borane (AB). AB represents a very promising hydrogen storage material (19.6 wt % hydrogen), the exploitation of which will be significantly advanced by the application of two complementary approaches, based around either stoichiometric or catalytic exploitation of metal reagents: (i) chemical modification designed to disrupt the framework of dihydrogen bonding in the solid state and thereby facilitate more facile and complete evolution of H2; and (ii) transition metal catalysis of AB dehydrogenation, focussing in particular on the elucidation of mechanistic information, thereby allowing for the rational design of more efficient catalyst systems.