Jan. 2, 2024, 4:15 p.m. |
Created
43
|
[{"model": "core.projectfund", "pk": 49358, "fields": {"project": 11911, "organisation": 11085, "amount": 846379, "start_date": "2021-07-01", "end_date": "2023-06-30", "raw_data": 134862}}]
|
|
Dec. 5, 2023, 4:24 p.m. |
Created
43
|
[{"model": "core.projectfund", "pk": 42109, "fields": {"project": 11911, "organisation": 11085, "amount": 846379, "start_date": "2021-06-30", "end_date": "2023-06-29", "raw_data": 102789}}]
|
|
Nov. 27, 2023, 2:14 p.m. |
Added
35
|
{"external_links": []}
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
43
|
[{"model": "core.projectfund", "pk": 34817, "fields": {"project": 11911, "organisation": 11085, "amount": 846379, "start_date": "2021-06-30", "end_date": "2023-06-29", "raw_data": 63219}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 101904, "fields": {"project": 11911, "organisation": 12416, "role": "PARTICIPANT_ORG"}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 101903, "fields": {"project": 11911, "organisation": 15039, "role": "PARTICIPANT_ORG"}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 101902, "fields": {"project": 11911, "organisation": 15043, "role": "PARTICIPANT_ORG"}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 101901, "fields": {"project": 11911, "organisation": 15040, "role": "PARTICIPANT_ORG"}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 101900, "fields": {"project": 11911, "organisation": 15041, "role": "PARTICIPANT_ORG"}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
41
|
[{"model": "core.projectorganisation", "pk": 101899, "fields": {"project": 11911, "organisation": 15043, "role": "LEAD_ORG"}}]
|
|
Nov. 21, 2023, 4:39 p.m. |
Created
40
|
[{"model": "core.projectperson", "pk": 64078, "fields": {"project": 11911, "person": 16908, "role": "PM_PER"}}]
|
|
Nov. 20, 2023, 2:05 p.m. |
Updated
35
|
{"title": ["", "SCORE: Supply Chain Optimisation for demand Response Efficiency"], "description": ["", "\nThe vision of this industrial research project is to bring from TRL3 to TRL5, SCORE: Supply Chain Optimisation for demand Response Efficiency. This system will enable Tier 1 and Tier 2 suppliers in manufacturing sectors to better manage their inventory through digital technologies and minimise the impact of sudden changes in demand and maintenance activities.\n\nThe key objectives in fulfilling this vision are to:\n\n1. Ensure smooth flow of materials between different nodes of supply chain\n2. Minimise waiting time to start production and avoid delays through tracking of materials at different stages\n3. Automate raw material demand according to production cell cycles for production lines to minimise 'on-floor' unused material\n4. Integrate continuous a learning-enabled model for prediction of demands and machinery breakdowns\n\nThe main areas of focus in this project are on implementing the sensors for the track and trace of inventory and developing machine learning algorithms for the creation of demand forecast model and inventory change models. Although enterprise resource planning (ERP) systems take into consideration some factors, e.g. the scheduled maintenance activities, they are mostly generic tools, lacking specialist forecasting systems, and relying extensively on statistical methods for inventory control predictions.\n\nThe innovation in SCORE lies in the application of machine learning to optimise supply chain management models which traditionally use statistical analysis methods, the integration of different models into one and the communication of the forecasts with the entire supply chain, leading to more precise control over the inventory, greater traceability of assets, and near elimination of delays in supply or overstocking of parts.\n\nOur initial target market is the supply chain management (SCM) software market, with Tier 1 and Tier 2 suppliers the target users. This project represents a clear technological innovation for UK SCM, and major growth opportunity for the SME supply chain consortium. To successfully achieve this, the project consortium features the relevant expertise including track and trace system development, machine learning algorithm development, and inventory control expertise.\n\n"], "extra_text": ["", "\n\n\n\n"], "status": ["", "Closed"]}
|
|
Nov. 20, 2023, 2:05 p.m. |
Added
35
|
{"external_links": [48215]}
|
|
Nov. 20, 2023, 2:05 p.m. |
Created
35
|
[{"model": "core.project", "pk": 11911, "fields": {"owner": null, "is_locked": false, "coped_id": "442cac90-28ff-483d-aee3-eeab3cad61e6", "title": "", "description": "", "extra_text": "", "status": "", "start": null, "end": null, "raw_data": 63202, "created": "2023-11-20T13:44:23.406Z", "modified": "2023-11-20T13:44:23.406Z", "external_links": []}}]
|
|